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You and your family just found the perfect house and now all you have to do is get the XYZ 

Mortgage Corporation to approve the loan.  You go to your neighborhood branch and talk to the loan 

officer.  After filling out multiple forms and telling them your life history, the loan officer says, “you are 

in luck, the loan committee is meeting tomorrow morning and they should be able to make a decision on 

your loan approval status by tomorrow afternoon.”  You say great and off you go.  Have you ever asked 

yourself the question, “Who is on the loan committee?”  Well, the answer, in today’s modern technology 

world, may be your friendly personal computer.   

That’s right, a computer may be deciding whether your loan is approved or denied. In many fields of 

business, the sciences, and government computers, programmed with the decision-making expertise and 

knowledge of a human, are actually making everyday decisions.  As business and government strive to 

cut costs and be more productive, many decisions are not being made by humans but by computers and 

Artificial Intelligence systems known as expert/knowledge-based systems. 

This article addresses the area of expert/knowledge-based systems: their definition, history, structure, 

development, and their future status. This article is meant to serve as an introduction to the field of 

expert/knowledge-based systems and the many problems, both big and small, that can be solved using this 

important computing technology. 

Specifically, this article is divided into five major sections.  In the remainder of this section, we first 

give “a definition” of an expert/knowledge-based system.  Next, we briefly discuss the historical aspects 

of this technology, including its relation to the broader field of Artificial Intelligence and some of the 

significant expert/knowledge-based systems that have been developed.  We then review the major 

applications areas for these systems and highlight some significant books, journals, and conferences that 

feature the discussion of the application of expert/knowledge-based systems to real-world problems. 

In the second section, we focus on the structure and major components of an expert/knowledge-based 

system.  The structure of an expert/knowledge-based system differs from conventional programming in 

that the data (knowledge) in the system resides in a knowledge base and is distinct and deliberately 
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separated from the control mechanisms that reside in the inference engine.  In the third section, we 

discuss the process of development of these systems.  One of the distinguishing features of 

expert/knowledge-based system development is that they are primarily built using a rapid prototyping 

paradigm (1). The fourth section reviews some of the most current applications and corporate usage of 

expert/knowledge-base systems.  These applications, both large and small, show the variety of application 

domains that are being addressed by these systems.  We then look into the future for expert/knowledge-

based systems technology.  We discuss some of the key research areas that need to be addressed in order 

to make this technology more applicable and we describe the evolution to the next generation of 

expert/knowledge-based system technology.  

Definition(s) of Expert/Knowledge-Based Systems 

The primary intent of expert system technology is to realize the integration of human expertise into 

computer processes.  This integration not only helps to preserve the human expertise but also allows 

humans to be freed from performing the more routine activities that might be associated with interactions 

with a computer-based system. 

Given the number of textbooks, journal articles, and conference publications about expert/knowledge-

based systems and their application, it is not surprising that there exist a number of different definitions 

for an expert/knowledge-based system.  In this article we use the following definition (2, 3): 

An expert/knowledge-based system is a computer program that is designed to mimic 

the decision-making ability of a decision-maker(s) (i.e., expert(s)) in a particular 

narrow domain of expertise. 

In order to fully understand and appreciate the meaning and nature of this definition, we highlight and 

detail the four major component pieces. 

??An expert/knowledge-based system is a computer program.  A computer program is a piece of 

software, written by a “programmer” as a solution to some particular problem or client need.  Because 

expert/knowledge-based systems are software products they inherit all of the problems associated 
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with any piece of computer software.  Some of these issues will be addressed in the discussion on the 

development of these systems. 

??An expert/knowledge-based system is designed to mimic the decision-making ability.  The specific 

task of an expert/knowledge-based system is to be an alternative source of decision-making ability for 

organizations to use; instead of relying on the expertise of just one—or a handful—of people 

qualified to make a particular decision.  An expert/knowledge-based system attempts to capture the 

reasoning of a particular person for a specific problem.  Usually expert/knowledge-based systems are 

designed and developed to capture the scarce, but critical decision-making that occurs in many 

organizations.  Expert/knowledge-based systems are often feared to be “replacements” for decision-

makers, however, in many organizations, these systems are used to “free up” the decision-maker to 

address more complex and important issues facing the organization. 

??An expert/knowledge-based system uses a decision-maker(s) (i.e., expert(s)).  Webster’s dictionary 

(4) defines an expert as  

One with the special skill or mastery of a particular subject 

The focal point in the development of an expert/knowledge-based system is to acquire and represent 

the knowledge and experience of a person(s) who have been identified as possessing the special skill 

or mastery.  

??An expert/knowledge-based system is created to solve problems in a particular narrow domain of 

expertise.  The above definition restricts the term expert to a particular subject.  Some of the most 

successful development efforts of expert/knowledge-based systems have been in domains that are 

well scoped and have clear boundaries. Specific problem characteristics that lead to successful 

expert/knowledge-based systems are discussed as part of the development process.  

Now that we have defined what an expert/knowledge-based is, we will briefly discuss the history of 

these systems.  In this discussion, we include their historical place within the Artificial Intelligence area 

and highlight some of the early, significant expert system development.  
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History of Expert/Knowledge-Based Systems 

Expert/knowledge-based systems are one of the two major paradigms for developing intelligent 

systems within the field of Artificial Intelligence.  Expert/knowledge-based systems are an example of the 

symbolic paradigm; the other major paradigm is the connectionist paradigm that has led to the 

development of Neural Network technology.  In order to discuss the history of these systems a brief 

history of the Artificial Intelligence field is necessary.  Expert/knowledge-based systems were the first 

major successful application technology to evolve from Artificial Intelligence research.  

 Artificial Intelligence 

The foundations of the field of Artificial Intelligence can be traced from many different disciplines 

including philosophy, mathematics, psychology, computer engineering, and linguistics (5).  

The first cited work in the area of Artificial Intelligence dates back to McCulloch and Pitts (6) in 

1943.  They proposed a model of artificial neurons that mimic the structure of the human brain; this area 

later became the connectionist paradigm.  

In the summer of 1956, John McCarthy organized a two-month workshop at Dartmouth and 10 

leading U.S. researchers interested in automata theory, neural networks, and the study of intelligence were 

invited. Two researchers from Carnegie Tech (now known as Carnegie Mellon University), Allen Newell 

and Herbert Simon were the focus of the workshop due to their reasoning program known as the Logic 

Theorist (LT).  Simon claimed “we have invented a computer program capable of thinking non-

numerically, and thereby solved the venerable mind-body problem.”  Soon after the workshop, LT was 

able to prove most the theorems in Chapter 2 of Russell and Whitehead’s Principia Mathematica.  An 

interesting note is that a paper on the use of LT to prove the theorems was rejected by The Journal of 

Symbolic Logic.  The Dartmouth workshop accomplished two major outcomes.  First, it served as a forum 

to introduce the leading researchers to each other; for the next twenty years, the field of AI would be 

dominated by these ten individuals, their students, and colleagues at MIT, CMU, Stanford, and IBM.  The 
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second major accomplishment of the workshop—and a more lasting one—was an agreement to adopt 

John McCarthy’s new name for the field: Artificial Intelligence. 

The work of Newell and Simon is the first documented work using the symbolic programming 

paradigm of AI.  Their work on LT led them to develop another program known as general Problem 

Solver (GPS).  The success of GPS was not as widely heralded however because of the limited class of 

problems that it could solve.  GPS was designed from the start to imitate human problem-solving 

protocols regardless of the information contained in the domain.  These so-called “weak” methods—

because they use weak information about the domain—turned out to show weak performance in solving 

problems in more complex domains. 

Researchers then took the opposite approach in the development of the DENDRAL program (7).  

They applied the knowledge of analytical chemists to infer the molecular structure from the information 

provided by a mass spectrometer.  DENDRAL holds a significant place in the history of 

expert/knowledge-based systems because it was the first system to use the expertise of human problem 

solvers and translate that knowledge into a large numbers of special purpose rules, known as a rule -based 

system. 

 Early, Significant Expert Systems  

The work on DENDRAL lead to many others successful applications of this new technology known 

as expert systems.  Feigenbaum and others at Stanford began the Heuristic Programming Project (HPP) to 

investigate other problem domains that could benefit from this new technology.  The next major effort 

was in the area of medical diagnosis.  Bruce Buchanan and Dr. Edward Shortliffe developed MYCIN to 

diagnose blood infections (8, 9).  Using about 450 rules, MYCIN was able to perform as well as some 

experts, and considerably better than some junior doctors were.   

MYCIN is one of the most widely known of all expert system applications developed.  And this 

despite the fact that it has never been put into practice.  However, MYCIN is significant to the history of 

expert/knowledge-based systems for two particular reasons.  First, unlike DENDRAL, which used a 
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model of a particular molecule as the basis for its reasoning, MYCIN was constructed from interviews 

with various doctors in the particular domain.  Therefore, MYCIN contains a number of heuristic rules 

that are used by physicians in the identification of certain infections.  The second major contribution of 

MYCIN was the later development of EMYCIN (Empty MYCIN).  EMYCIN was the first 

expert/knowledge-based system shell.  It took approximately 20 man-years to develop the MYCIN 

program.  The researchers realized that if expert systems were to become a viable problem solving 

technique this development time must be cut.  In an effort to do reduce the time to develop an expert 

system the researchers developed EMYCIN by taking all of the rules out of the system and leaving just an 

empty “shell” in which other developers in other domains could then just “plug-in” their new knowledge 

base.  We discuss expert/knowledge-based systems shells in the development section. 

There were other significant expert system applications that were also developed in the early days of 

expert systems.  These systems include PUFF, which used EMYCIN in the domain of pulmonary 

disorders, DELTA/CATS, which was developed at General Electric Company to assist railroad personnel 

in the maintenance of GE’s diesel-electric locomotives (10).  Also at this time, researchers at CMU 

developed the first truly successful commercial application of expert systems.  The system, developed for 

Digital Equipment Corporation (DEC), was used for computer configuration and known as XCON (R1). 

XCON, originally titled R1, was developed by John McDermott at CMU for aiding in the 

configuration of VAX and PDP-11 computer systems at DEC.  There exist an enormous number of 

configurations for VAX and PDP-11 computer system—DEC attempts to configure each system to meet 

specific customer needs.  XCON was originally developed as a 500-rule prototype that examined the 

specific needs of the customer and decided the exact configuration of components necessary to meet the 

customer requirements.  In particular, XCON’s function was to select and arrange the components of a 

computer systems including: the CPU, the memory, the terminals, the tape and disk drives, and any other 

peripherals attached to the system.  XCON works with a large database of computer components and its 

rules determine what makes a complete order.   
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The development effort began in 1978 and by September 1979, XCON was able to configure more 

than 75 percent of all customer orders that it was given.  By 1981, XCON was being used by DEC on a 

regular basis and DEC estimates that its cost savings in 1983, 1984, and 1985 were a combined $83 

million.  Today, XCON is still being used by DEC to configure all VAX orders.  There is a development 

team dedicated to keeping the rules in XCON current and keeping the users of XCON trained on the latest 

updates.  A new copy of XCON is released practically every 3 months and the latest version handles 

nearly 12,000 different computer components that could possibly configured into a customer order (11).  

XCON is one of the major, early success stories in the field of expert systems, for its high visibility 

domain, its continued use and expansion, and its tremendous impact on the bottom line (profit) at DEC. 

Major Application Areas 

There are two different ways developers look at application areas for expert/knowledge-based 

systems.  First, they look at the functional nature of the problem.  Secondly, they look at the application 

domain.  We review both of these ways to get a better understanding for the application of 

expert/knowledge-based systems to “real-world” problems.  In 1993, John Durkin (12) published a 

catalog of expert system applications that briefly reviews a number of applications of expert/knowledge-

based system technology and categorizes each of the nearly 2,500 systems. 

Both MYCIN and XCON point out two different functions that are viewed as highly favorable for 

expert/knowledge-based system development.  MYCIN mainly deals with the diagnosis of a disease 

given a set of symptoms and patient information.  XCON, on the other hand, is a synthesis-based (design) 

configuration expert system.  It takes as its input the needs of the customer and builds a feasible 

arrangement of components to meet the need.  Both of these systems solve different generic “types” of 

problems. 

An expert system may have many differing functions.  It may monitor, detect faults, isolate faults, 

control, give advice, document, assist, etc.  The range of applications for expert system technology ranges 
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from highly embedded turnkey expert systems for controlling certain functions in a car or in a home to 

systems that provide financial, medical, or navigation advice to systems that control spacecraft.   

Table 1 lists the ten different types of problems generally solved by expert/knowledge-based systems.  

Within each problem type expert perform a generic set of tasks, such as diagnosis or planning. 

Table 1. Expert/Knowledge-Based System Application Areas  
Problem Type  Description 
Control Governing system behavior to meet specifications 
Design Configuring Objects under constraint 
Diagnosis Inferring System Malfunction from observables 
Instruction Diagnosing, debugging, and repairing student behavior 
Interpretation Inferring situation description from data 
Monitoring Comparing observations to expectations 
Planning Designing actions 
Prediction Inferring likely consequences of given situation 
Prescription Recommending solution to system malfunction 
Selection Identifying best choice from a list of possibilities 

As can be seen from Table 1, there are many different types of problems that can be solved using 

expert/knowledge-based system technology.  Currently, the majority of expert/knowledge-based system 

applications are diagnostic systems. (Durkin (12) estimates nearly 30%); interpretation and prediction 

systems are also highly favorable functional domains. 

Expert/knowledge-based systems also cover a number of different application areas, such as business, 

manufacturing, medicine, and engineering.  Durkin lists over 20 different application areas, including 

business, which encompasses marketing, management, finance, accounting, etc.  

Books/Journals/Conferences 

Many books, articles and conference proceedings have been published over the years discussing the 

design, development, testing, and application of expert/knowledge-based systems technology.  Our 

purpose here is not to categorize all of this tremendous literature but to highlight some of the authoritative 

works in the field.  One of the first textbooks on expert systems to appear was published in 1986 by the 

late Donald Waterman, entitled A Guide to Expert Systems (13).  At the same time, a number of textbooks 
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and edited volumes dedicated to describing the development methods for expert/knowledge-based 

systems and their various applications began to appear (9, 14, 15).  More recent textbooks on 

expert/knowledge-based systems have been written (10, 16, 17, 18).  Each of these textbooks provides a 

solid introduction to the development and application of expert/knowledge-based systems.  Another 

source of introductory information into expert/knowledge-based systems can be found in chapters 

contained in many Artificial Intelligence textbooks (5, 19, 20).  

Recently, the impact of periodicals (professional journals) on AI research has been examined (21).  

Many of these journals regularly feature development and application articles on expert/knowledge-based 

systems technology. 

There are a number of professional organizations are involved in promoting and discussing E/KBS 

technology; including American Association of Artificial Intelligence (AAAI), IEEE Computer Society, 

Association for Computing Machinery (ACM), Decision Sciences Institute (DSI), and Institute for 

Operations Research and Management Science (INFORMS). 

Many conferences are designed to act as a forum for discussion of expert/knowledge-based systems 

including the bi-annual World Congress on Expert Systems  and Expert Systems, which is sponsored by 

the British Computer Society.  

To this point we have provided an overview of expert/knowledge-based systems by presenting a 

definition, reviewing the history and some successful applications, and recommending various starting 

points for research into the field of expert/knowledge-based systems.  In the next section we will begin to 

examine the structure of an expert/knowledge-based systems and discuss, in some detail, the major 

components that make this technology unique.   

Structure of Expert Systems 

In the early days the phrase “expert system” was used to denote a system whose knowledge base and 

reasoning mechanisms were based on those of a human expert.  In this article a more general position is 
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held.  A system will be called an “expert system” based on its form alone and independent of its source of 

knowledge or reasoning capabilities. 

The purpose of this section is to provide an intuitive overview of the architectural ideas associated 

with expert systems.  In discussing the architecture of expert systems we will first introduce the concept 

of an expert system kernel and then embed that kernel in a fuller and more traditional expert system 

architecture. 

Expert System Kernel Architecture 

The kernel of an expert system contains those components that are the basic and the required 

components for all expert systems.  These components are identified as a fact base, a rule base, and an 

inference mechanism.  The fact base and the rule base combine to be the knowledge base for the kernel.   

Figure 1 provides an overview of the kernel of an expert system from this structuralist point-of-view.  

At the highest level of abstraction there is the environment E and the expert system ES connected to or 

embedded in it.   This level may be represented as: 

E  <---> ES. 

The environment establishes the domain of application of the expert system. 

FACTS

INFERENCE

RULES
Input from the
environment E.

Declarative
statements about the
environment E.

Mechanism for relating the declarative and
conditional knowledge to arrive at some truth
about the environment E and/or to cause some
action in the environment.

Output to the
environment E.

Conditional
statements about
the environment E.

 
Figure 1. Kernel of an Expert System 
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In addition to being viewed as the context in which the expert system performs its functions the 

environment E may be viewed as the source of the knowledge that the expert system ES has and the data 

which drives its behaviors.  The expert system ES may be viewed as a reactive system - i.e., it reacts to 

data and information it receives from the environment E based on the reasoning capabilities it possesses. 

Knowledge Base 

In our discussion we will consider only rule-based expert systems.  In a rule-base expert/knowledge-

based system the knowledge of the domain is captured (represented) by production rules (22). 

The knowledge base in an expert system kernel consists of both a fact and a rule base.  The fact base 

contains up-to-date information and data on the state of that portion of the environment E that is pertinent 

to the expert system kernel.  The rule base is typically populated with rules of the following form: 

                                                    A -----> B 

This is interpreted as “if condition A is satisfied then do B”.    The “A” portion of the rule is called 

the antecedent or LHS (Left Hand Side) of the rule.  The “B” portion of the rule is called the consequent 

or RHS (Right Hand Side) of the rule.  If A is true (i.e., all of its conditions are satisfied by data and facts 

in the fact base) and whatever actions specified in B are accomplished then the rule is said to have been 

“fired”. 

The condition “A” may be a conjunction of conditions A1, A2, ..., An which must all be satisfied in 

order to trigger any actions stipulated by B.  Any component of this conjunction may involve a negative.  

Likewise “B” may be a sequence of actions B1, B2, ..., Bk all of which will be taken if the conditional part 

of the rule is satisfied and the rule is fired. 

The relationship between the rule  base and the fact base is quite straightforward.  If there is a fact in 

the fact base like  “Var1 = n” and there is a rule in the rule base that states that “If Var1 = n then B” then 

this rule is considered for execution (or firing).  There may be several rules that are candidates for firing 

based on the status of the fact base.  It is up to the inference mechanism to resolve any conflicts and 

determine the appropriate firing sequence. 
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 Inference Engine 

The inference engine (mechanism) is that part of the expert system kernel which supports reasoning 

about the environment by proper manipulation of its rule and fact bases. It establishes the current state of 

the environment from its fact base and uses that state information to identify the set of rules whose 

conditional parts are satisfied by the environment’s state. It determines which rules in the rule base are 

possible candidates for firing based on the circumstance that the conditional part of the rules are satisfied 

by facts in the fact base.  These facts provide an up to date picture of the environment for the expert 

system.   

There are basically two ways or control strategies by which the inference engine manages rules to 

arrive at some conclusion or to arrive at a sequence of actions to be taken with respect to the environment.  

These are forward and backward chaining.  Most expert systems support only one control strategy.  Some 

support both. 

Forward Chaining 

Forward chaining supports what is called “data-driven” reasoning.  It’s especially important for 

monitoring functions.  Forward chaining works from LHS to RHS of rules.   

A----->B 

---------> 

Forward Chaining 

To get an intuitive feeling for this type of chaining consider the following procedure: 

• Identify new facts and data in the fact base  

• Identify the rules whose LHSs are satisfied by the selected data and facts.  

• If more than one rule is identified resolve conflict and select one rule or sequence 

of rules according to some priority  

• Fire the rule or sequence of rules  
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The activation of the RHS of the selected rule(s) will result in new facts and data being instantiated in 

the fact base.  These new data and facts can again be used to identify rules whose LHS are satisfied and 

the forward chaining process can proceed. 

Backward Chaining 

Backward chaining supports goal-driven reasoning. It is especially important for diagnostic activities.  

Backward chaining works from RHS to the LHS of rules: 

       A------->B 

                                                             <----------- 

                                                        Backward Chaining 

In this type of control strategy for managing rules the initial focus is on the RHS of some selected rule 

from a set of rules whose RHSs satisfy some selected goal. The idea is to identify the conditions of the 

environment that would be necessary to achieve a selected goal.  Consider the following for an intuitive 

feel for the process: 

• Select goal to be achieved 

• Identify rules in the rule base whose RHSs reflect the goal 

• Examine the LHS of selected rules 

• Identify the facts and data in the fact base needed to evaluate the LHSs to true 

Using the identified facts as new goals and going through the identified process can continue this 

backward reasoning process until a goal is proven true.    

An Expert System Architecture 

If we embed the kernel of an expert system in an operational context? that contains processes for 

interacting with and interfacing with a user, a process for knowledge and data acquisition and a process to 

support the generation of explanations for rule firings and advice to the user? then we arrive at what is 

customarily viewed as the architecture for an expert system. 
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Input from the 
environment E.

Declarative 
statements 
about the 
environment E.

Mechanism for relating the 
declarative and conditional 
knowledge to arrive at some truth 
about the environment E and/or to 
cause  somes action to occur in 
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environment E.
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about  the 
environment E.

    Knowledge 
          and
Data Acquisition

  User
Interface

Explanation

 Facts     Rules

Inference

 
Figure 2. Expert System Architecture  

Figure 2 displays the architecture commonly associated with expert systems.  In our terminology it is 

comprised of a kernel augmented by processes for data and knowledge capture, user interfaces and 

interactions, and an process for generating and presenting to a user explanations of its behaviors. 

The “Knowledge and Data Acquisition” process is used by the expert system to acquire new facts and 

rules associated with its specific domain.  It is through this process that capabilities can be added to or 

subtracted from the expert system.  Associated with this process is the concept of knowledge engineering. 

This is the process whereby knowledge from an expert or group of experts or other sources such as books, 

procedure manuals, training guides, etc. are gathered, formatted, verified and validated, and input into the 

knowledge base of the expert system (see the discussion on expert/knowledge development for a more 

detailed explanation of knowledge engineering activities). 
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The “User Interface” process is the mechanism used by the expert system to present to some human 

user information on its functioning, and specifically information on its determination of the state of the 

environment to which it is associated and its actions relevant to its understanding of the environment’s 

state.  Most current user interfaces are supported by multimedia technology and are designed to provide 

the user with the most complete and unambiguous presentation of information possible. 

The “Explanation” process is used by the expert system to provide to the user a reasoned history of its 

actions and/or recommendations.  This explanation is usually generated by providing a textual 

commentary identifying the sequence of rules it has fired with associated canned or automated 

commentary generation on why the rule was fired.  This type of explanation can be used by the user to 

verify that the reasoning mechanism being utilized by the expert system is correct.  It also provides 

additional information to the user that can be used to establish a more complete context for understanding 

both the state of the environment in question and the rationale for any advice or opinion given by the 

expert system. 

Development 

The development of an E/KBS—often referred to as knowledge engineering—follows much the same 

path of any other software product.  However, within the development of an E/KBS terminology and the 

nature of the software development process are different from conventional software systems. 

The major development effort in creating an expert/knowledge-based system is the design and 

development of the knowledge base (KB).  One of the problems with the design and development of a KB 

is the lack of a formal methodology.  By formal methodology we mean a strategy that allows us to 

measure (precisely) the performance of an E/KBS similar to conventional software system design and 

development.   

Expert/knowledge-based system development (usually) relies on an evolutionary rapid prototyping 

methodology to create the KB.  One definition of rapid prototyping is an iterative process that develops 

“an easily modifiable and extensible working model of a proposed system, not necessarily representative 
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of a complete system, which provides users of the application with a physical representation of key parts 

of the system before implementation” (1).  By using rapid prototyping the developer can focus on 

building small working systems that can be the central element of discussions between the users, client, 

and the developers in solving the particular decision problems at hand.  The rapid prototyping paradigm, 

for KB development, is often unstructured and ad hoc, especially concerning the testing and evaluation of 

the KB.  This can lead to the development of a KB that is inefficient and contains numerous potential 

errors.  Under evolutionary rapid prototyping, an E/KBS is designed and built in an incremental fashion.  

There have been many paradigms offered for the design and development of a KBS.  The best known 

of these paradigms is the five-stage process given by Buchanan, et al. (23).  These five stages—

identification, conceptualization, formalization, implementation, and testing—correspond loosely to the 

eight stages in the waterfall model for conventional software development.  Buchanan, et al. points out 

that the process of developing an E/KBS is iterative.  The E/KBS developer and the domain expert may 

revisit any of the previous stages for further revision or refinement of the concepts and/or relationships in 

the problem domain.  This is inherent in the evolutionary rapid prototyping process. 

Derek Partridge (24) describes a methodology of artificial intelligence program construction through 

a process known as RUDE (Run-Understand-Debug-Edit).  RUDE is based on rapid prototyping and the 

abstraction of the problem at each stage of the development process.  He describes a KBS as an 

"incompletely specified function" because it models the behavior of a human and, as such, is not formally 

specified in the same manner as conventional software.  Partridge argues that given this incomplete 

problem specification, the only way to develop a KBS is through a trial-and-error approach.  Many other 

approaches have been proposed (13, 14, 25, 26). 

An approach that builds on both Buchanan and Partridge is the four-stage methodology known as 

DICE (3); DICE stands for Design, Implementation, Critique, and Editing.  The methodology, which 

emphasizes testing and reliability analysis, uses evolutionary rapid prototyping and creates a control 

system where the feedback of the testing results improves the reliability and performance of the system.  
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Regardless of the methodology chosen to develop an E/KBS, there are six key activities to be 

performed within the development life cycle of an E/KBS.   

??Problem Selection 

??Knowledge Acquisition 

??Knowledge Representation 

??Implementation 

??Testing, Verification, Validation, Evaluation 

??Maintenance/Sustenance 

In this section, we discuss each of these activities in relation to the development of an E/KBS. 

Problem Selection/Feasibility 

Someone once said that there are three important rules in developing an expert/knowledge-based 

system.  The first rule is “pick the right problem,” the second rule is “pick the right problem,” the third 

rule is “pick the right problem.”  In software development and scientific research, the most critical step is 

choosing the problem (27).  Especially in the area of knowledge engineering, problem selection is critical.  

Finding a problem of the proper scope is especially imprint in E/KBS development.  Remember that 

E/KBS solve problems in a “particular narrow domain.”  If the domain is too large acquisition of the 

proper knowledge becomes an overwhelming task, if the domain is too small, the solution looks trivial. 

In this section, we give guidelines for selection of the proper expert/knowledge-based systems 

application problem.  The majority of this discussion comes from work done by David Prerau from work 

done of COMPASS and other systems in the telecommunications domain (28).  These problem selection 

guidelines are discussed in terms of the type of problem, the expert, and the domain area personnel. 

The knowledge engineering team (the developers) should follow these guidelines for the selection of 

the appropriate problem: 

??The task requires symbolic reasoning. 



 19 

??The task requires the use of heuristics. 

??The task may require decisions to be based upon incomplete or uncertain information. 

??The task does not require knowledge from a large number of sources. 

??Good sets of test cases are available. 

??A few key individuals are in short supply. 

??The domain is one where expertise is generally unavailable, scarce, or expensive. 

??The task is decomposable, allowing rapid prototyping for a small, closed subset of the 

complete task and then slow expansion to the complete task. 

??The task solves a problem that ahs value but is not on a critical path. 

??The amount of knowledge that is required by the task is large enough to make the 

knowledge based developed interesting. 

??The task is sufficiently narrow and self-contained.  The aim is not to build a system that is 

expert in entire domain, but a system that is expert in a limited task within the domain. 

??The domain is characterized by the use of expert knowledge, judgment, and experience. 

??Conventional programming (algorithmic) approaches to the task is not satisfactory. 

??There are recognized experts that solve the problem currently. 

??Expertise is not or will not be available on a reliable and continuing basis; that is, there is a 

need to capture the expertise. 

??The system can be phased into use gradually: Incomplete coverage can be tolerated (at least 

initially), and it can be easily determined whether a sub-problem is covered by the present 

system. 

??The task is not all-or-nothing; some incorrect or non-optimal results can be tolerated. 

??The skill required by the task is taught to novices. 
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??There are written materials that discuss the domain. 

??Experts would agree on whether the system’s results are good (correct). 

??The need for the task is projected to continue for several years. 

??Management is willing to commit the necessary human and material resources. 

??The task requires only cognitive skills, not perceptive (vision, tactile, auditory, etc.) skills. 

??The task should be performed frequently. 

To summarize these guidelines, a good problem to solve is one that is cognitive in nature and 

sufficiently complex, has the support of management and users, has been shown to be an important 

function provided by only one person (or a small group) frequently.  

Another critical factor in the development of an expert/knowledge-based system is having an expert 

to work with the knowledge engineering team.  The following is a set of guidelines for what 

characteristics make a “good” expert: 

??There is an expert who will work on the project. 

??The expert’s knowledge and reputation must be such that if the system captures a portion of 

their expertise, the system’s output will have credibility and authority. 

??The expert has built up expertise over a long period of task performance. 

??The expert will commit a substantial amount of time to the development of the system. 

??The expert is capable of communicating his or her knowledge, judgment, and experience, 

as well as the methods used to apply them to a particular task. 

??The expert is cooperative. 

??The expert is one person the company can least afford to do without. 

??The expert should have a vested interest in obtaining a solution. 

??The expert must also understand what the problem is and should have solved it quite often. 
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In summary, you would like to find a domain expert that is cooperative, articulate, and considered 

knowledgeable by others in the company. 

The third major group involved in the development of an E/KBS is the domain area personnel (users 

and managers).  As stated above, it is essential to have the support of the people for whom the system is 

being developed.  These guidelines provide a set of criteria related to the domain area personnel during 

the problem selection phase: 

??Personnel in the domain area are realistic, understanding of the potential uses and limitation 

of an expert/knowledge-based system for their domain. 

??Domain area personnel understand that even a successful expert/knowledge-based system 

will likely be limited in scope and, like the human expert, may not produce optimal or 

correct results all the time. 

??There is strong managerial support from the domain area, especially regarding the large 

commitment of time by the expert(s) and their possible travel or temporary relocation, if 

required. 

??The system developers and domain area personnel jointly agree upon the specific task 

within the domain. 

??Managers in the domain area have previously identified the need to solve the problem. 

??The project is strongly supported by a senior manager for protection and follow-up. 

??Potential users would welcome the completed system. 

??The system can be introduced with minimal disturbance of the current practice. 

??The user group s cooperative and patient. 

In summary, the domain area personnel have to be involved at every step of the development process.  

The users and managers should be shown intermediate prototypes and feedback from their interaction 

should be included in subsequent prototypes.  In addition, there is nothing is the above list of guidelines 
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that cannot be stated for any software development project.  By involving the users and managers in the 

process, you can significant increase the chances of the final system being a product that is useful and 

potentially cost-effective for the organization. 

Knowledge Acquisition 

To get knowledge into a computer program we must acquire it from some source.  This section 

considers the manual acquisition of knowledge.  Automated approaches are discussed in the section on 

learning.   

Two major sources exist for the knowledge used in expert systems: experts (which could include the 

expert system developer) and documents or text.  Both sources have advantages and disadvantages, 

although human experts are almost always preferred.  Experts tend to be more current and have a broader 

range of knowledge than documents.  They also can respond to questions and provide different sets of 

examples.  However, their time is expensive and unless they support the project, they can work against 

the goals of the expert systems development.  In some cases, expertise may have been lost, and the 

developer must rely on documents.  Documents are generally cheaper to acquire and use.  However, they 

typically have limited amounts of information and what they have is not always completely relevant.   

There are two major methodological components of knowledge acquisition from experts: 

acquisitional and analytical. Acquisitional methods describe the process of interacting with the expert to 

obtain information, while analytical methods describe how we use the information to derive rules.   Each 

of these two methodological components has two subclasses (see Figure 3).   

Observational Introspective

Acquistional Methods

Process Tracing Protocol Analysis

Analytical Methods

Knowledge Acquistion

 
Figure 3. Knowledge Acquisition Methods  
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As shown in Figure 3, acquisitional methods consist of either observational or introspective 

approaches.  In the observational approach we watch the expert solving actual or simulated problems.  If 

possible, we have him/her describe their solution approach as they go through it.  The introspective 

approach has the expert respond to examples provided by the knowledge engineer.  The expert then 

describes in detail how problem solving occurs for the examples.  Clearly, these two approaches are not 

mutually exclusive, and the knowledge engineer can frequently employ both to obtain the need 

information for expert system development. 

Information acquired from the expert must be converted into rules.  Process tracing takes the 

transcript of the session with the expert and looks for paths from data to decisions.  Protocol analysis is a 

more detailed look at the transcript and also other relevant information about the problem-solving 

situation.  To develop protocols we look for inputs to decision making.  We also look for relevant 

nonverbal data and background knowledge.  In a sense protocol analysis can begin with process tracing 

and then expand upon to acquire additional information.  Once we have developed the protocol we look 

for important elements of the protocol beyond informational elements that would change the problem 

solving procedures.  For instance, does order matter?  When did the alternatives develop and when did 

attributes get instantiated?  Answers to questions such as these help to convert protocols into knowledge.   

Converting protocols into rules is the final phase of knowledge acquisition.  In some cases the 

protocol analysis provides easily interpreted If-Then statements.  In other cases additional work is needed.  

One tool for accomplishing this is the repertory grid.  The grid consists of two parts, constructs and 

elements.  Constructs are the attributes or informational characteristics obtained from the protocol 

analysis.  Elements are key examples that the knowledge engineer hopes to use to clarify the rules.  The 

knowledge engineer with the help of the expert then looks for groupings of the examples based on the 

constructs.  These groupings define the constructs or attributes that are used for problem solving in the 

examples.  For instance, consider a medical diagnosis problem.  We may have a variety of different 

problem-solving approaches for the patients.  By examining the constructs or attributes, we may find that 

age of the patient is an important construct in determining which protocol is initiated.  Repertory grids 
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provide a convenient method for performing this analysis and hence converting protocol information into 

rules (for more details see (29)). 

Because knowledge acquisition is the major bottleneck in constructing expert systems a number of 

researchers have built tools for the process.  These tools essentially help to bring knowledge directly from 

the expert into rules.  However, most expert systems still require considerable work by knowledge 

engineers.  A good description of this knowledge acquisition research is provided by (30). 

Knowledge Representation 

The third phase in E/KBS development is knowledge representation.  The major objective in this 

phase is to take the acquired knowledge and translate it into machine-readable form.  There are many 

different methods of knowledge representation in E/KBS development and in this section we discuss the 

two most popular ways to represent knowledge: rules and frames.  For discussion of other knowledge 

representation forms see (11, 16, 17, 18).  The focus of the first part of this discussion on knowledge 

representation is knowledge that is stated in a deterministic state.  In a later section, we provide a 

discussion of the modes used to represent uncertain knowledge within a knowledge base.   

Rules 

Currently, the most popular method of knowledge representation is in the form of rules (also known 

as production rules (22) or rule-based systems).    

In Figure 4, we illustrate the use of rules through a simple rule base of five rules created for the 

domain of credit approval.  There are many questions a loan officer may ask in the process of deciding 

whether to approve or deny an application for credit.  Some of the questions the officer may ask concern: 

??the current salary of the person, 

??the credit history of the person, and  

??their current employment 
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A simple (fictitious) rule base that might be applicable to this domain is given in Figure 4. 

IF: 
 The customer's income is less than 25,000. 
THEN: 
 The customer's line of credit has been approved: no. 
---------------------------------------- 
RULE NUMBER: 2    
IF: 
 The customer's income is at least 25,000. 
AND The customer's rating is excellent. 
THEN: 
 The customer's line of credit has been approved: yes. 
---------------------------------------- 
RULE NUMBER: 3    
IF: 
 The customer's income is at least 25,000. 
AND The customer's rating is good. 
AND The customer has been in their present job less than 2.5 years. 
THEN: 
 The customer's line of credit has been approved: no. 
---------------------------------------- 
RULE NUMBER: 4    
IF: 
 The customer's income is at least 25,000. 
AND The customer's rating is good. 
AND The customer has been in their present job at least 2.5 years 
THEN: 
 The customer's line of credit has been approved: yes. 
---------------------------------------- 
RULE NUMBER: 5    
IF: 
 The customer's income is at least 25,000. 
AND The customer's rating is poor. 
THEN: 
 The customer's line of credit has been approved: no. 
 

Figure 4. Loan Application Rule Base 

One of the first things to notice about the representation of the knowledge is the simple structure of 

the rules themselves.  The knowledge of the decision-making process is given in the form of simple IF-

THEN constructs.  Note that each of the rules contains one or clauses in the IF part of the rule, these 

clauses are known as the antecedent, and one (but potentially more than one) clause in the THEN part of 

the rule, these clauses collectively are called the consequent. 
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In each of the rules in Figure 4, the antecedent of each rule contains n clauses (all joined by AND) 

that must all be true for the rule to become triggered (sometimes called instantiated).  The process of 

adding the consequent of the rule to current working knowledge is known as firing of the rule.  Formally, 

a rule is fired if and only if the antecedent of the rule is true and the consequent is instantiated. 

As can be seen from the rules in Figure 4, the loan officer’s first criteria for deciding whether to 

approve or deny the loan application is current income.  That is, if the person’s current income is less than 

$25,000, then they cannot be approve for the loan.  However, if their income is at least $25,000, other 

conditions (such as credit history and, possibly, years on a job) must be checked in order to make this 

decision. 

The popularity of rules as a mode of knowledge representation has occurred for many reasons.  One 

advantage to using rules is their modularity.  Each rules in the rule base stands apart from the other rules.  

Additions and deletions of rules can be made easily.  Care must be taken when adding or deleting rules 

because the logic of the decision-making has now been potentially changed. 

A second advantage to the use of rules is their uniform structure.  From the discussion and the formal 

representation given above, all rules in a rule base have the same form.  Each rules contains one or more 

antecedent clauses (usually joined by an AND) and one or more consequent clauses joined by an AND. 

Lastly, rules provide a “natural” mode of knowledge representation.  The time required to learn how 

to develop rules bases (knowledge bases that contain rules) can be kept to a minimum.  In addition, many 

experts solve problems based on combining pieces of evidence (known facts) and the combination of 

those facts lead to other “newly inferred” facts (i.e., the consequent).  Lastly, there exist many E/KBS 

development packages—known as shells—which use rules as the primary method of knowledge 

representation.  E/KBS shells will be discussed in more detail later. 

While rules have many advantages over the other form of knowledge representation, they also have 

some drawbacks.  A knowledge base of rules can quickly become unwieldy and unmanageable if not 

properly implemented.  Thorough documentation of the individual rules and the rules that they most 

likely interact with must be kept.  In addition, rules can be hard to maintain for the same reasons 
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previously stated.  Rules can be inefficient in processing because the inference engine is performing a 

search over the rules to find the rules that could be fired given the current state of knowledge in the 

system.  Lastly, rules can not handle all types of knowledge.  There are many different knowledge 

representation modes that have been proposed and while rules are suitable for most applications there 

does exist certain types of knowledge for which it is not well suited.  

While rules are currently the most popular means of knowledge representation, the formation of 

“good” rules is still more of an art rather than a science.  The development of structured programming 

techniques for rules is given in (31, 32). 

Frames 

The use of object-oriented methods in software development has impacted the development of E/KBS 

as well.  Knowledge in an E/KBS can also be represented using the concept of objects to capture both the 

declarative and procedural knowledge in a particular domain.  In E/KBS, the terminology that is used to 

denote the use of objects is frames (33), and frames are fast becoming a popular and economical method 

of representing knowledge.  Frames are extremely similar to object-oriented technology and provide 

many of the benefits that have been attributed to object-oriented systems.  In this section, we discuss the 

basic elements of frames as a knowledge representation mode, a further, more detailed explanation in 

presented in (16).   

A frame is a self-contained unit of knowledge that contains all of the data (knowledge) and the 

procedures associated with the particular object in the domain.  In Figure 5, we show a hierarchy of 

objects using the classification of humans as the particular domain.  Each of the frames in Figure 5 

represents an object in the domain.  The top-level object is known as the class.  As you proceed down the 

tree each of the objects become a more specific example of the upper node.  For instance, Jack is a 

particular example of a Male and Human; we call Jack an instance of the class Human, while Male is a 

subclass of Human. 
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Class Name: Human  
    
Subclasses: Men, Women  
    
Properties: Age Unknown  
 Number of Legs 2  
 Residence Unknown  
 Life expectancy 70  
    

 
    
Class Name: Men  
    
Subclasses:   
    
Properties: Age Unknown  
 Number of Legs 2  
 Residence Unknown  
 Life expectancy 64  
 Mustache Unknown  
    

 
    
Object Name: Jack  
    
Class: Men  
    
Properties: Age 45  
 Number of Legs 1  
 Residence Harrisonburg  
 Life expectancy 85  
 Mustache True  
    

Figure 5. Frame Hierarchy 

There are three basic types of frames that must be written in a frame-based system: a class frame, a 

subclass frame, and an instance frame; all of these are shown in Figure 5.  A class frame consists of all of 

the relevant attributes that pertain to the application at the highest level.  In Figure 5, the relevant 

attributes for the class Human are age, number of legs, residence, and life expectancy.   Both the subclass 

and instance frames inherit all of the attributes from the class frame and, in addition, more specific 

attributes can be added.  The basic difference between the three types of frames is the level of detail of the 

attributes and their associated values and the placeholders that link the frames. 
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In addition, frames may have procedures (methods) associated with each of them.  These procedures 

allow the frames to act on the data in the frame to make changes/updates when necessary.  Many time 

frames are combined with rules in knowledge representation in order to capture the complexity of the 

domain (16). 

Other Modes of Knowledge Representation 

Rules and frames are not the only modes of knowledge representation that are available to knowledge 

engineers.  In this section, we will briefly introduce some of the other modes currently being used for 

knowledge representation.   

Logic, specifically predicate logic, is one of the oldest forms of knowledge representation.  Predicate 

logic is based on the idea that sentences (propositions) express relationships between objects as well as 

the qualities and attributes of such objects (17).  Within predicate logic, the relationships are expressed by 

predicates and the objects themselves are represented by arguments of the predicate.  Predicates have a 

truth-value, depending on their particular argument; specifically predicates can either be true or false.   

Cases, or case-based reasoning, is a form of knowledge representation based on analogical reasoning.  

Cases are used to capture the previous experiences of expert in solving problems in a domain.  When 

presented with a new situation, the system attempts to match previous cases with the given situation.  The 

previous cases are reformulated in order to provide a solution for the given situation.  More about case-

based reasoning and the use of cases for knowledge representation can be found in (34, 35). 

Uncertainty Management 

Up to this point we have considered knowledge representation strategies under conditions of 

certainty.  Very few real problems have this characteristic.  Hence, we need to investigate methods for 

representing problem solving knowledge under conditions of uncertainty.  Despite considerable research 

activity, reasoning under uncertainty remains difficult because of the desire for both rigorous and easy to 

apply methods.  Unfortunately, these two objectives turn out to be conflicting in the domain of 

uncertainty management.  The most rigorous and justifiable methods are also the most difficult to 



 30 

implement.  Conversely, the most commonly implemented techniques have little, if any theoretical 

underpinnings.  Hence the knowledge-based system designer must carefully weigh the trade-offs in his or 

her particular situation and choose an approach to uncertainty management based on these trade-offs.  In 

this section we will discuss the major approaches to managing uncertainty in expert systems.  As we 

discuss each of the approaches we will highlight their major strengths and weaknesses with a view to 

providing the reader with the capability to make critical assessments. 

Before proceeding with a description of the approaches to uncertainty management we need a clearer 

picture of the nature of uncertainty as it affects knowledge-based systems.  Suppose we have represented 

problem solving knowledge in the following rule:   

IF pulse is thready and foot skin temperature is low THEN cardiac index is low. 

This rule represents a model of problem solving reality typically taught to nurses and attending 

physicians in an intensive care unit.  But like many problem-solving models it provides only an 

approximate representation of a complex reality.  As we examine this model from the standpoint of 

uncertainty management we note several sources of uncertainty.  First, the rule itself encapsulates an 

uncertain relationship.  Not every person with these conditions has low cardiac index.  The lack of 

precision or uncertainty in this rule is typical of problem solving rules or models.  Most are 

approximations to reality with some error associated with their input to output mappings.   

A second source of uncertainty concerns the evidence in the antecedents of the rule.  We may not 

know for certain that the pulse is thready, because this evidence might come from a trainee, who is 

inexperienced evaluating a pulse measurement.  Further even experienced nurses might differ among 

themselves about subjective measurements, such as this.  Hence, even if we believe the rule contains little 

uncertainty the evidence itself might be highly uncertain. 

Finally, we note that the terms used in this rule have uncertain meaning.  The rule is written in a 

fashion consistent with the training given to intensive care nurses, who can acquire more understanding of 

terms like “low” and “thready” through extensive training.  However, computer-based approaches, such 

as expert systems require structured algorithmic methods to handle the uncertainty in natural language 
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statements.  As we shall see later in this section, some investigators differentiate between uncertainty and 

imprecision.  They argue that natural language statements contain imprecision instead of uncertainty and 

should, therefore, be handled with different mechanisms.   

This section will provide an overview to the major approaches to uncertainty management for expert 

systems.  We will explore the basic mechanisms for reasoning under uncertainty advocated by each 

approach and then consider their comparative strengths and weaknesses.  While the field has produced 

many more approaches than the ones considered here, nonetheless these remain the best known and used 

methods in existence.  Other approaches tend to build on these for very specialized applications and, 

hence can best be understood in the context of the more basic and general methods described here. 

Bayesian Inference 

Bayesian inference provides the foundation for the most formal and mathematically rigorous of the 

uncertainty management schemes used in expert systems.  At the center of Bayesian inference is the 

notion of subjective probability.  Traditional definitions of probability use frequentist arguments: the 

probability of an event is the frequency of occurrence of that event.  Bayesian or subjective probability 

extends this definition to include personal measures of belief in the occurrence of an event (see 36, 37).  

The arguments for and against this perspective are lengthy and beyond the scope our concerns here (see 

(38) for a detailed discussion).  Rather, we take as given the arguments for subjective probabilities and the 

considerable axiomatic machinery that accompanies probability theory in general.  We focus instead on 

the reasoning process necessary for using this approach as the basis for uncertainty management in expert 

systems.   

As the name implies the major tool for reasoning with probabilities according to Bayesian inference is 

Bayes rule.  This rule, which follows directly from axioms about conditional probability, shows how to 

update the probability of an event given evidence about the occurrence of another related event.  The rule 

is easily illustrated through an example.   

Suppose we want to build an expert system to perform a diagnostic task (e.g. diagnose the cause of 

problems in a desktop computer).  Suppose further that we have n mutually exclusive and exhaustive 
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hypotheses about the causes of the problem in the computer.  We label these hypotheses H1, ..., Hn.  By 

mutually exclusive we mean that no more than one hypothesis can be true.  By exhaustive we mean that at 

least one hypothesis must be true.  Hence, exactly one among the set of hypotheses we will code into our 

expert system must be the true cause of any problem we will present. 

This assumption appears quite daunting for expert systems developers and it should.  However, since 

we can define the hypotheses in any way we desire, we can always create a “none of the above” 

hypothesis that accounts for all other causes.  This approach can many times effectively handle the 

exhaustive part of the assumption.  The mutually exclusive part is more difficult to treat and we will 

postpone our discussion of approaches until we have successfully presented a more thorough foundation 

for Bayesian inference.   

For our system to reason effectively about the hypotheses we will require evidence.  Different 

domains have quite different types of evidence, but most expert systems work with evidence that comes 

from finite sets.  Bayesian inference is not limited to this group and the interested reader can consult (39) 

to see the details of extending the approach here to continuous or infinite domains. 

Suppose that our evidence consists of the outcome of another related event (e.g. the presence of 

certain information on the screen of our troubled computer).  If there are m possible outcomes for this 

event then we can label these X1, ..., Xm.  Given the evidence that outcome Xj occurred, our goal is to find 

the (a posteriori or more simply posterior) probability of each hypothesis or Pr{H = Hi|X = Xj} for i = 1, 

..., n.  To find these we need a formal relationship between the evidence and the hypotheses.  This 

relationship is given by conditional probabilities:  Pr{X=Xj|H=Hi} for i = 1, ..., n and j = 1, ..., m.  

Because we know the value for X and want these probabilities as a function of H, we call these 

conditional probabilities the likelihood functions.   

Finally, we also need to know the probability of each hypothesis before observing the evidence.  We 

label these hypotheses priors and use the notation Pr{H = Hi} for i = 1, ..., n.   
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Once we have the prior probabilities, the likelihoods (or conditional probabilities for X given a value 

for H), and the occurrence of a specific X, we can use Bayes rule to provide us the probability for each 

hypothesis given the evidence.  Bayes rule is 

Pr{H ? Hi | X ? X j} ?
Pr{X ? Xj | H ? Hi}Pr{H ? Hi}

Pr{X ? Xj | H ? Hi}Pr{H ? Hi}
i ?1

n

?
. 

Before going any further we need to see how to use this rule in expert systems.  For our computer 

diagnosis example, suppose our computer fails to dial using its modem.  For simplicity we consider three 

hypothetical sources for the problem: the modem (H1); the modem or device controller software (H2); and 

the communications software (H3). A priori we think each of these hypotheses is equally likely, so Pr{H = 

Hi} = 1/3 for i = 1,2,3.    

Now suppose as evidence we successfully reinstall the controller software and we still have the 

modem still fails to connect.  So our evidence, X, the state of the machine after the reinstallation is 

continuing failure to operate (X1) rather than successful operation (X2).  Note that while a successful 

operation at this point would allow us to conclude with high probability that the original defect was in the 

controller software, the continued failure does not allow us to exclude the controller software from further 

consideration.  Let Pr{X=X1|H=Hi} = 1 for i = 1 or 3 and Pr{X=X1|H=H2} = 0.2.  The first of these 

probabilities says that we believe the modem will fail to connect after the software reinstallation if the 

problem is either a defective modem or communications software.   

Using this information and Bayes rule we can easily find that Pr{H=Hi| X=X1} = 0.455 and Pr{H=H2| 

X=X1} = 0.09.  Hence, the probability that the controller software is defective has dropped to less than 

10% while the probability for each of the other two hypotheses has increased to almost half.  A rule based 

system that contained the following rule  

IF no connection after reinstallation of controller software THEN modem 

defective or communications software defective 

would allow us to reach its conclusion with a probability of about 0.91.  
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Notice first that our use of Bayes rule in this example has provides a mechanism for handling the 

uncertainty inherent in the rule.  We have not seen how to handle uncertainty in the evidence.  Further, in 

this simple example we only reasoned through one level.  That is, we collected our evidence, fired one 

rule, and reached our diagnosis.  In most problems we want to handle more complex forms of reasoning 

that involve multiple types of evidence. 

It turns out that we can treat both of these issues in exactly the same way.  Suppose that an 

acquaintance performed the controller reinstallation and then reported to us that modem still would not 

dial.  Because this person is not as skilled as we are, we are reluctant to conclude with certainty that X=X1 

as we did before.  To handle this situation, we add another layer to our reasoning and call this new 

evidence Y.  We let Y=Y1 if the friend reports that the reinstallation and test failed to correct the problem 

and Y=Y2 otherwise.   Our X variable has had subtle change of meaning.  Rather than the actual result of 

our test, it now reports the result we would get if we did the reinstallation and test rather than our friend.  

A priori we might believe the probability that our reinstallation test would show failure is slightly less 

than the probability that the controller software is the problem.  So we assign Pr{X=X1} = 0.3.  The 

conditional probability for our friend’s result, Y=Y1, given we know our result measures our confidence 

in our friend’s test, and hence the evidence.  Suppose we evaluate it as Pr{Y=Y1| X=X1} = 0.9 and also 

Pr{Y=Y1| X=X2} = 0.2.  Then applying Bayes rule we get Pr{X=X1| Y=Y1} = .63 or slightly more than 

double what we believed a priori.    

To see how we use Bayesian inference to chain rules and evidence together, we can now calculate the 

new probability for the hypotheses concerning our defective modem.  To do this we need to find 

Pr{H=H i|Y=Y1}.  We will again use Bayes rule, but to do this we must obtain the likelihoods or 

Pr{Y=Y1|H=Hi}.  We obtain these using the law of total probability, expressed in this case as 

Pr{Y=Y1|H=Hi} = Pr{Y=Y1|X=X1}Pr{X=X2|H=Hi} + Pr{Y=Y1|X=X2}Pr{X=X2|H=Hi} 

Inserting the values given for the quantities on the right side of this expression we obtain 

Pr{Y=Y1|H=Hi} = 0.9, 0.34, and 0.9 for i = 1,2, and 3 respectively.  We can now put these values into 

Bayes rule in combination with our prior probabilities for the Hi, i = 1,2,3.  The resulting values for the 
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hypotheses are Pr{H=H i|Y=Y1} = 0.42, 0.16, and 0.42 for i = 1,2, and 3, respectively.  Notice that the 

uncertainty in our evidence has now increased the probability of H2 given the evidence by more than one 

and one half times its value when the evidence was certain.  In other words, we are much less confident 

that we can discard the controller as a cause for the problem, when our test contains some uncertainty.   

Recently several authors (for example, (40)) have proposed methods for applying Bayes rule to 

knowledge-based systems that use local calculations at each rule.  The above approach required us to 

have knowledge of probabilities stored in other rules, as is evident in the total probability calculation.  

These methods employ rules and evidence structured as directed, acyclic graphs or DAGs.  In order to 

apply local computations in this scheme, we need one additional assumption - conditional independence.  

The version we illustrate here, called Markov chain independence has the form 

Pr{X,Y,Z} = Pr{Z|Y}P{Y|X}P{X}. 

The DAG for this rule is shown in Figure 6. 

X Y Z

 
Figure 6. Example Directed, Acyclic Graph 

To reason with this DAGs we use series of updating rules.  The details for these rules are given in 

(40).  This approach has significant computational advantages over more traditional applications of 

Bayesian inference, while maintaining the formal theoretical basis for the procedure. 

The above examples and discussion provide insight into the major advantages and disadvantages of 

Bayesian inference for uncertainty management.  Among its primary advantages is the fact that Bayesian 

inference provides a formal, rigorous quantification of uncertainty.  This also means that both users and 

experts have a precise interpretation of probabilities as subjective measures of uncertainty.  So when an 

expert says that an event has a 0.9 probability of occurrence this means that he or she would place a bet 
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on that outcome according to that probability.  No other approach to uncertainty management has this 

clear interpretation. 

However, we pay a price for the formality and precision of Bayesian inference.  While the use of 

local computations in directed, acyclic graphs has somewhat reduced the computational burdens, this 

approach still has greater computational complexity that several of its competitors.  More important than 

the computational problems are the assessment burdens.  For a rule that considers three hypotheses and 

four event states, we need to obtain 12 conditional probabilities and three prior probabilities.  Essentially 

this means about an order of magnitude more probability assessments than we have rules.  Further, if we 

need to build any of these probabilities from data collection, we need an order of magnitude more data 

than probabilities.  For expert systems with hundreds or thousands of rules, the probability assessments 

can become extremely burdensome. 

Another equally important disadvantage for expert systems development is that Bayesian inference 

does not allow for incremental development.  Because we need to specify all the hypotheses and evidence 

in order to apply the updating rules, we cannot incrementally add rules as we build the system.  Instead, 

we must specify all components before we construct the uncertainty management system.  This works 

against the development philosophy for expert systems, which seeks to incrementally add rules and 

change rules in consultation with the domain expert. 

A final disadvantage cited by some to Bayesian inference is the treatment of mutually exclusive and 

exhaustive events.  In order to perform our calculations, we need to define this set of events and assign 

appropriate probabilities.  Critics have argued that in some cases this is not appropriate.  This criticism is 

debatable, since from a Bayesian perspective this criticism can be handled by redefining the outcome 

space to correspond to the current state of knowledge.  Nonetheless, this criticism has lead to the 

development of a competing approach to uncertainty management that we will consider in the next 

subsection. 
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Dempster-Shafer Theory of Belief Functions 

As we noted in the previous section, Bayesian inference requires a mutually exclusive and exhaustive 

set of alternatives for any outcome.  This means that the probabilities for these outcomes must sum to one. 

Some have argued that this requires people to express greater certainty than they actually have in an 

outcome.  For instance, in our previous example we expressed prior probabilities of 1/3 for each 

hypothesis about the cause of our modem problem.  Suppose we really do not know the cause and feel 

that 1/3 is too high for any of these hypotheses.  However, any lower value would violate the sum to unity 

requirement for probabilities for mutually exclusive and exhaustive events. 

Shafer (41) proposed an approach to uncertainty management that allows for expressions of this type 

of uncertainty.  According to this theory we assign a degree of belief denoted Bel to a possible outcome or 

hypothesis.  Bel(A) measures the strength of belief or evidence in favor of hypothesis A and takes on 

values from 0 (no evidence) to 1 (certainty).   

In addition to Bel, this theory also defines a concept called Plausibility or Pl.  Pl(A) measures the 

belief or evidence for hypothesis A when we remove Bel(¬A) where ¬A is negation of the hypothesis A.  

So, Pl(A) = 1-Bel(¬A).   The range [Bel(A), Pl(A)] forms an interval for the probability mass of A, m(A).  

The size of this interval gives us a measure of our uncertainty regarding the probability of A.   

To assign probability mass in our particular problem domain we start by considering the set of 

possible hypotheses, which in the theory of belief function is called the frame of discernment or ? .  For 

our computer modem problem there are three hypotheses, so ?  = {H1, H2, H3}.  Rather than assign 

probability to this set, the theory of belief functions allows assignment of probability to each member of 

the power set (or set of all subsets) of the ? .  In this case this consists of eight or 23 subsets including the 

empty set and ? .  The more mass we assign to ?  then the more uncertain we are about the probabilities.  

So if we set m(?) = 1, we have no information about which of the three hypotheses might be true (hence, 

Bel(Hi) = 0 and Pl(Hi) = 1 for i = 1, 2, 3).  As we become more confident in our probability assignments 

for the hypotheses through the accumulation of evidence, then the value for m(?) decreases toward 0.   
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To accumulate probabilities in hypotheses the theory needs a mechanism for updating probability 

mass values.  This mechanism is provided by Dempster’s rule.  We can describe this rule by referring 

again to our example modem problem.  Suppose we want conduct two tests, the first (test 1) is after 

reinstalling the controller software and the second (test 2) is after reinstall the communications software.  

The modem still does not work after each installation.  Let m1 and m2 be our probability mass assignments 

after each separate test.  Dempster’s rule gives use a way to compute the effect of the combination of 

these two tests on the probability masses.  Let this combined probability mass be mc.  So for hypothesis Hi 

Dempster’s rule is 

m3(Hi) ?

m1(A)m2(B)
A ? B? Hi

?
1 ? m1( A)m2(B)

A? B? ?
?

. 

As with Bayesian inference, the Dempster-Shafer theory of belief functions has its advantages and 

disadvantages.  The primary advantage is the capability to describe in greater detail uncertainty about 

hypotheses.  However, the price one pays for this added feature is a considerable increase in the 

computational and assessment burden.  Where the assessment for Bayesian inference was considered 

difficult, for the theory of belief functions the assessment burden has grown exponentially (2k) in the size 

of each set of alternatives (k).  Obviously, this explosive growth also adds to the computational burden.  

Further, unlike Bayes rule, Dempster’s rule of combinations is a heuristic, which has no theoretical 

justification other than equivalence to Bayes Rule under equivalent conditions.  In conclusion, the 

Dempster-Shafer theory of belief functions has addressed one issue with Bayesian inference but at the 

cost of making all other concerns much worse. 

Certainty Factors 

Shortliffe and Buchanan (9) in their development of one of the first expert systems proposed certainty 

Factors, MYCIN.  Their wanted to develop a computationally tractable approach to handling the 

uncertainty involved in recommending treatments for patients with bacterial infections.  They also wanted 

a method that provided for easy assessments of uncertainty and modifications when new rules were added 
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to the knowledge base.  Finally, as with the Dempster-Shafer approach, Shortliffe and Buchanan were 

also interested in describing situations that contained an incomplete set of hypotheses.  

Shortliffe and Buchanan define the certainty factor for hypothesis H given evidence E, CF(H,E), as 

the difference between measure of belief in H given E, MB(H,E), and the measure of disbelief in H given 

E, MD(H,E).  They defined these two quantities in terms of the conditional probabilities as shown: 

MB(H,E) ?
1 if Pr(H) ? 1
Max{Pr(H | E),Pr(H)} ? Pr(H)

1? Pr(H )
 otherwise

??
??
??

??
??

MD(H, E) ?
1 if Pr( H) ? 0
Pr(H) ? Min{Pr(H | E),Pr(H)}

Pr(H)
 otherwise

??
??
??

????

 

With these definitions we note that the range for both MB and MD is 0 to 1.  MB is 0 when the 

evidence fails to support the hypothesis and MD is 0 when the evidence supports the hypothesis.  Since 

CF(H,E) = MB(H,E)-MD(H,E), then the range for CF is -1 to 1.   

We now need to provide a mechanism for combining evidence in rules.  Consider first the situation 

where two rules provide evidence for a single hypothesis, H.  Denote the evidence in each rule E1 and E2.  

Then we find the measures of belief and disbelief from both pieces of evidence as 

MB(H,E1 ? Ew ) ?
0                                                                MD(H,E1 ? Ew ) ? 1

MB(H,E1) ? [1 ? MB(H, E1 )MB(H, E2 )]  otherwise
??
??
??

MD(H, E1 ? Ew ) ?
0                                                               MB(H,E1 ? Ew ) ? 1

MD(H,E1) ? [1? MD(H,E1 )MD(H,E2 )]  otherwise
??
??
??

 

To illustrate this idea, consider again our computer problem diagnostic system.  Our specific problem 

is to diagnose the cause of our inability to dial over a commercial telephone line using our computer and 

its installed modem.  One of our rules assigns a measure of belief of 0.4 to the hypothesis that the modem 

is at fault, H1, given the failure of dial-up test after reinstalling the controller software.  Another rule 

assigns a measure of belief of 0.5 to this same hypothesis given the failure of a dial-up test after we 

reinstall the communications software.  Hence, the measure of belief given both pieces of evidence is 
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MB(H1, E1 E2) = 0.4 + 0.6 · 0.5 = 0.7.  Notice that the order in which the evidence is presented does not 

matter.  

Now consider the case in which rules are chained together so that the uncertain outcome of one rule 

feeds into another rule.  This is similar to the uncertain evidence example we considered in our discussion 

of Bayesian inference.  Suppose that we receive evidence E1 about the outcome of our modem test from a 

less than completely reliable source.  Let S be the source of our evidence E1 and we assign a certainty 

factor to E1 given S: CF(E1,S) = 0.8.  Then we can find our measure of belief given the evidence from this 

source as MB(H1,S) = MB(H1, E1) · Max{0, CF(E1,S)} = 0.4 · 0.8 = 0.32. 

Finally, we need a method to conjunctions and disjunctions of hypotheses.  This allows us to have 

rules with predicates that have conjunctions and disjunctions.  The combination rules are  

MB(H1?? ?? ?, E) = Min{MB(H1, E), MB(H2, E)} and 

MB(H1?? ?? ?, E) = Max{MB(H1, E), MB(H2, E)}. 

Certainty factors provide a convenient way to model uncertainty in an expert system.  They correct 

for many of problems we observed in Bayesian inference.  In particular, they provide quickly computable 

solutions through a set of simple combination rules as given above.  Because the certainty factors are 

associated with rules and separated from the methods of combining evidence, this easy extensibility of the 

rule base.  Also the assessment burden is greatly reduced to one assessment per proposition in a rule.  

This is clearly much more manageable than the large numbers of assessments for Bayesian inference or 

the exponential growth in assessments for the Dempster-Shafer approach. 

The major drawback of certainty factors is their lack of theoretical or formal foundation.  Despite 

their definition in terms of conditional probabilities, their use can lead to strange and uninterpretable 

results.  Consider for example a problem with three mutually exclusive hypotheses.  The first two are 

equally likely with probabilities of 0.49, while the remaining hypothesis has a probability of 0.02.  We 

now obtain evidence that completely excludes the third hypotheses but gives us no information about how 
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to discriminate among the other two.  Hence, Pr(Hi|E) = 0.5.  Using our formula for the measure of belief 

we obtain 

MB(Hi,E) = [0.5 -0.49]/[0.51 0.5] = 0.04 for i = 1,2, 

which is an unacceptably low value given the value for Pr(Hi|E).  Further, even though we know that 

these two hypotheses are the only possibilities for this problem, we get 

MB(H1?? ?? ?, E) = Max{0.04, 0.04} = 0.04 ? ??? 

Unfortunately, there are many more of these types of problems that one can encounter while using 

certainty factors.  Additionally, while the probabilities used in Bayesian inference have an understandable 

interpretation, the definition of a certainty factor does not lend itself to an easily interpretable value. 

Hence, while certainty factors have addressed many of the problems with Bayesian inference, they 

have lost both the rigor and interpretability in the process.  The lack of rigor may not matter for systems 

built for applications where safety or critical performance is not an issue.   

Fuzzy Sets 

The last approach to uncertainty management does not actually address uncertainty at all.  Fuzzy sets 

have been proposed for use in expert systems to address imprecision rather than uncertainty.  Many expert 

systems use rules based on natural language expressions such as the patient’s pulse is “thready.”  We 

could of course model evidence of a thready pulse as uncertain and use one of the three previously 

described approaches.  However, advocates for fuzzy sets argue that terms such as thready are inherently 

imprecise not uncertain, and should be modeled with different methods.  Fuzzy sets represent a method 

for handling imprecision.   

Fuzzy sets were first proposed by Lofti Zadeh (42) as an approach to modifying the notion of strict 

set membership.  In traditional mathematics a set either contains or does not contain a specified element.  

For example, the set of integers clearly contains the number 4 but does not contain the number 4.5.  In 

proposing fuzzy sets, Zadeh argued that some sets are not as crisp as the set of integers.  For example, 

while many would agree that Abraham Lincoln would qualify for membership in the set of tall former 

heads of state, they might argue against Napoleon Bonaparte’s membership in this group.  The argument 
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would center on the word “tall.”  By itself this word does not admit a precise meaning.  Hence, Zadeh 

argued that we should allow for membership functions for elements of sets that take on a continuum of 

values between 0 and 1.  A value of 0 indicates the element is not a member of the set, while a value of 1 

indicates membership.  Intermediate values show a degree of membership in the fuzzy set.   

Combination rules provide us with a way to join sets.  While the field of fuzzy sets has explored a 

wide variety of combination rules, those provided initially by Zadeh remain the most popular.  Let mA(x) 

denote the degree of membership of element x in fuzzy set A.  Then 

mA? B(x) = Max{mA(x), mB(x)} 

mA? B(x) = Max{mA(x), mB(x)} 

We can use fuzzy sets in expert systems as an approach to quantify the imprecision in the rule 

premises.  One approach is to obtain membership values at the time of rule construction.  We then reason 

with these values as rules are instantiated and fired.  Another approach is to obtain membership values 

from the user at run time.  For example, we might ask the nurse using our expert system to enter the 

membership value for the patient in the set thready pulse.  Finally, since set theory forms the foundation 

for logic, we can also employ fuzzy logic.  In fuzzy logic the truth-values for a proposition take on a 

continuum of values between 0 and 1.  Fuzzy logic provides a vehicle for reasoning with fuzzy extensions 

to the propositional calculus and the first order predicate calculus. 

Because fuzzy sets represents an approach to imprecision rather than uncertainty we cannot directly 

compare it with the other methods.  However, we can make some general remarks that contrast the 

approaches.  As with certainty factors, fuzzy sets provide a numerical value that lacks easy interpretation.  

This lack of interpretability is evident when we consider membership in the union of two complementary 

sets.  Suppose we have a patient who we assign membership of 0.6 in the fuzzy set, thready pulse.  Their 

membership in the fuzzy set, not thready pulse is 0.4.  But according to our combination rule, the patient’s 

membership in the union of these two sets is 0.6 not 1.0.   
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Fuzzy sets do possess many of the advantages of certainty factors, such as ease of assessment and 

computational tractability.  However, unlike certainty factors, fuzzy sets were not designed to work with 

expert systems.  So there is no one accepted approach for applying them in rule based systems.  

Implementation 

The implementation of an E/KBS is the process of taking the knowledge that has been acquired and 

represented—in rules, frames, or another mode—and put it into machine-readable format.  That is, 

actually taking the knowledge and putting into some computer code.  This can be accomplished three 

different ways: 

??using a conventional programming language, 

??using a programming language design for Artificial Intelligence programs 

(PROLOG or LISP), or 

??using an E/KBS programming environment known as a shell. 

In this section, we will briefly discuss the use of conventional and AI-specific programming 

languages and then focus attention on the use of E/KBS shells.  There are other organizational 

implementation issues that need to be addressed in order for the E/KBS application to be successful.  

These issues are not specifically addressed here, but the reader is encouraged to further explore these 

issues by examining (11, 28).  

E/KBS can be developed using conventional programming languages such as BASIC, Pascal, C, 

and/or C++.  In recent years, developers have turned to using JAVA to develop E/KBS solutions as well.  

There are, in addition, programming languages that are specifically designed for AI programming. The 

programming language PROLOG (PROgramming in LOGic) is an implementation of predicate logic for 

computing and is therefore a natural environment for using predicate logic to represent knowledge in a 

domain; many successful applications have been developed in PROLOG (19).  LISP (LISt Processor) is a 

programming language that was development by John McCarthy in the early 1970s to write AI-based 

programs, including E/KBS.  More information of the use and syntax of PROLOG and LISP can be found 

in many AI textbooks (5, 19, 20). 
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The problem with using a conventional AI-specific programming language is that you not only have 

to build the knowledge base, but you need to create all the structural components discussed previously in 

the programming language you are using.  This added effort and additional complexity has caused many 

E/KBS developers to look to other methods for implementing E/KBS. 

The popularity of E/KBS development can be highly attributed to the creation of programming 

“environments” that allow non-programmers to implement E/KBS applications; these programming 

environments are commonly referred to as shells.  

As stated earlier, expert/knowledge-based systems shells were first introduced after the development 

of the MYCIN expert/knowledge-based system.  The developers of MYCIN realized what a time-

consuming task developing an E/KBS was that they “emptied” out the knowledge based from MYCIN 

and were left with EMYCIN (Empty MYCIN).  This allowed future e/KBS developers to concentrate 

their efforts on the development of the knowledge base and just “plug-in” their knowledge base of rules 

into the shell. 

There have been a number of advances in expert/knowledge-based system shells since EMYCIN and 

there now exists numerous software vendors that sell E/KBS shells. Many of the shells, like EXSYS 

(from Multilogic, Inc.) are primarily rule-based shells that allow for easy development of rule -based 

E/KBS.  Other vendors, such as Level 5, have developed object-oriented E/KBS shells? i.e., Level 5 

Object? to promote more sophisticated means of performing knowledge representation.  Level 5 Object 

allows a developer to use both frames and rules, as well as other features, to develop E/KBS applications.  

The number of vendors and software products is too numerous to detail here, but Durkin (16) provides an 

appendix that lists many of the commercial shells available. 

In recent years, E/KBS have been able to be applied to more “real-time” applications, such as 

command and control or manufacturing operations, through the use of “real-time” E/KBS shells.  The two 

most popular “general-purpose” shells on the market are G2, developed by Gensym Corporation and RT-
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Works, developed by Talarian Corporation are two of the most popular ‘real-time” shells available on the 

market today. 

Finally, the future of E/KBS may find a place on the Internet and through Web pages.  Many vendors, 

including Multilogic, Inc., are developing E/KBS shells that function as part of a Web page.  In the future, 

more World Wide Web applications may be based on E/KBS to collect information and provide 

recommendations to consumers. 

Testing, Verification & Validation, and Evaluation 

An important component of any software development effort is the testing and evaluation of the 

software system (solution) to ensure correctness of the outputs and user satisfaction with the product in 

solving the given problem.  Since expert/knowledge-based systems are software solutions to problems 

then the importance of testing and evaluation cannot be minimized. 

During the development of MYCIN the developers were looking for a method to test and evaluate the 

output (advice) given by MYCIN in the domain.  The developers performed three studies to test MYCIN 

by comparing the output of the MYCIN systems to the output of the doctors around whose knowledge the 

system was built (9).  The authors state that new studies were undertaken because they felt that the results 

of the MYCIN T&E were being biased by the fact that the evaluators knew that the system outputs were 

being generated by a computer program.  To alleviate this problem, the authors undertook a blinded 

study—one in which the evaluators did not know whether the results came from a colleague or MYCIN.  

However, in this report (43) the authors discuss the results of the blind evaluation, but give few details on 

how the evaluators or the test cases were selected.  The study did show that MYCIN "worked as well as 

the experts in the domain."  This testing effort attempted to mimic the Turing Test. 

As more expert/knowledge-based systems were developed different evaluation techniques were 

suggested.  These techniques tended to fall into two classes.  First, there are those authors that try to apply 

traditional software engineering techniques to the testing of E/KBS.  These authors (44, 45, 46, 47, 48, 
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49), and many of the papers in (50), claim that traditional verification and validation techniques work 

with E/KBS testing and should be used more extensively. 

The second group of authors’ view E/KBS as different from conventional software systems and 

therefore conclude that new techniques for testing and evaluation must be developed.  One of the most 

vocal of this group is Green and Keyes (51).  These authors, discussing the verification and validation 

(V&V) of E/KBS, state succinctly that “lack of understanding has created a vicious circle: V&V of 

E/KBS is not done because nobody requires it.  Nobody requires V&V of E/KBS because nobody knows 

how [to do V&V of E/KBS].  Nobody knows how to do V&V of E/KBS because nobody has done it.” 

In four separate papers, authors (52, 53, 54, 55) review the current state-of-the-art in performing 

verification and validation on E/KBS and examine the steps necessary to perform V&V on E/KBS.  

While O’Leary (54) states that effective methods of validating a KB are critical, he finds that the current 

methods allow the developer to only look at the individual system components and not how they work 

together.  In another paper he outlines four major steps in performing validation of E/KBS.  These steps 

include: ascertaining what the E/KBS knows, does not know, or knows correctly; ascertaining the level of 

expertise if the system; determining if the E/KBS is based on a theory of decision making in the particular 

domain; and determining the reliability of the E/KBS.  O’Keefe et al. (52) view validation as a part of 

evaluation, which is a broader area that seeks to assess the E/KBS overall value.  After outlining some 

basic concepts, O’Keefe et al. review some standard methods for performing qualitative and quantitative 

validation of E/KBS.  While they admit that their discussion has been descriptive in nature, they point out 

that prescriptive methodologies for performing validation of E/KBS are needed. 

All the literature to date points to the fundamental problem in the area of E/KBS testing and 

evaluation; however, no one has yet attempted to solve the problem.  Concerning E/KBS, there is a lack 

of a formal framework for discussion of their verification, validation, testing, and--the more general 

problem of—evaluation; as well as a major lack of standardization of terminology (56).   This 

terminology disagreement leads to confusion on various methods. 



 47 

Two important aspects in the testing of E/KBS software have been mentioned: completeness and 

consistency.  Completeness is defined as the coverage of the domain by the particular E/KBS.  In other 

words, does the E/KBS solve most of the problems (give correct solutions for many of the inputs) in the 

domain of interest?  Within completeness the items that are checked for include dead-end rules, missing 

rules, and unreachable rules.  Consistency, on the other hand, refers to mathematical concept as applied to 

the antecedents and consequents of the rules in a knowledge base.  Consistency checks for: redundant 

rules, conflicting rules, subsumed rules, circular rules and unnecessary antecedent conditions.  More on 

completeness and consistency is discussed in (17). 

Beyond these aspects, some authors (2, 3, 57) have attempted to formulate methods for reliability 

evaluation of rule-based E/KBS.  Reliability is one small piece of the testing and evaluation process 

within software systems.  By attempting to solve this small piece of the larger problem the authors are 

attempting a bottom-up approach to E/KBS test and evaluation.  In addition to the development of 

reliability estimation techniques, the use of the test results and reliability information is used to enhance 

the design of the rules in the E/KBS (2, 3, 57).  These efforts are on going and further experience with 

numerous examples of E/KBS needs to be performed. 

Still today, many of the methods used to test and evaluate E/KBS are either ad hoc or based on 

traditional software engineering methods.  These methods may one day prove to be useful for the testing 

and evaluation of E/KBS.  However, at this point new methods for finding the reliability of a KB in an 

E/KBS must be explored—especially in the context of a rapid prototyping development methodology. 

The development of software metrics is a viable, and is often the only, way to measure the progress of 

a software system currently in development.  Design metrics are the most promising type of knowledge 

base metrics because they aid the E/KBS developer before coding has begun.  Software complexity can 

also help software designers in making simple modifications that will aid in the understanding and testing 

of the system; and eventually improve the reliability.  Metrics for E/KBS are at their infancy and there is 

hope that metrics can be developed to aid an E/KBS developer during the process of building a KB. 
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Design metrics and the early estimates of the reliability will aid the KB community more in producing 

more reliable and efficient systems.  

Maintenance 

Maintenance is often a major issue for any software system.  This is even truer for E/KBS technology.  

Much of the knowledge in an E/KBS is (or potentially can be) changing constantly and these knowledge 

units need to be updated.  This problem of maintaining an evolving knowledge base has been referred to 

sustaining the knowledge base rather than maintaining.  Sustenance of an E/KBS requires a steady upkeep 

of the rules (or whatever knowledge representation modes is used) (11).  However, caution must be 

enforced when changing the knowledge in a knowledge base.  The effects of a change in one part of the 

knowledge base can have devastating side effects in other parts.  Care must be taken in order to ensure 

that the total knowledge of the knowledge base has been upgrade and not degraded by changes.  Methods 

for performing knowledge base maintenance need to be developed in order to ensure knowledge integrity. 

The development of an E/KBS is a complex and time-consuming process.  Much research must still 

be performed on specific areas of the development process.  However, this does not preclude the on-going 

development of E/KBS today.  In the next section, we highlight the development efforts of current 

systems. 

Current Applications 

As has been pointed out in many places in this article, expert/knowledge-based systems have a very 

broad applicability to decision problems in business, industry, government, the sciences, and even 

everyday life.  In this section, we discuss some of the current applications of E/KBS technology and how 

governments and businesses throughout the world are using them.  This section will include discussion of 

how some major corporations are using E/KBS technology to improve operations and decision-making 

and in turn profitability.  We then discuss the use and application of E/KBS technology in the 

international arena.  Finally, we will look at some of the latest, most innovative applications of E/KBS as 

presented at recent conferences on Innovative Applications of Artificial Intelligence? sponsored by the 
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American Association for Artificial Intelligence (AAAI)—and the Third World Congress on Expert 

Systems (Seoul, South Korea).   

Corporate Usage of E/KBS 

Not all companies have a major success story to tell—like that of XCON for Digital Equipment 

Corporation? when it comes to the application of E/KBS technology.  However, many (small and large) 

corporations are finding key applications that save time and money by helping to make better, more 

consistent, and faster decisions.  One of the major companies to embrace E/KBS technology is DuPont.  

Led by the efforts of DuPont’s AI division director, Ed Mahler, DuPont began using E/KBS technology 

on many small applications.  In particular, it was Mahler who instigated the deployment of well over 200 

expert systems.  Each of these systems is quite small? averaging about 80 production rules.  However, 

Mahler estimates that aggregate savings to DuPont was at tens of millions annually (58). 

The corporate strategy toward E/KBS development is not always small, but many small systems exist.  

For example, Boeing Corporation, the aerospace giant, uses a 25,000 rule—written in PROLOG? expert 

system to advise employees in the proper assembly of complex electrical connectors and cables for 

airplane manufacturing, maintenance, and repair (19).  In addition, automobile manufactures such as 

Chrysler use expert systems for design of automobile cooling systems and General Motors uses expert 

systems for diagnosing problems in manufacturing equipment (19). 

Expert/knowledge-based system technology is not limited to the manufacturing sector.  American 

Express Corporation uses expert system technology to examine transactions and attempt to detect patterns 

of fraudulent card use.  American Express’ Authorizer Assistant (AA) is a rule -based system that provides 

the first line of service for credit authorization at the point of sale (19). 

It is truly difficult to track the deployment of E/KBS technology in many companies due to the fact 

that many? most likely? include some form of proprietary information.  Durkin’s catalog of applications 

cites 2,500 working E/KBS, but he estimates that the total number of E/KBS applications is easily over 

25,000 systems (12). 
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International Usage 

The use of E/KBS technology is not limited to only the United States.  Organizations, academic 

institutions, corporations, and governments around the world have applied E/KBS technology to solve 

everyday decision problems.   

This is most evident from the papers and tutorials that have been presented at the three? soon to be 

four? World Congresses on Expert Systems.  The World Congress on Expert Systems was established 

“to bridge the gap between the academician and the practitioner and concentrate on expert system work 

being performed throughout the world” (59).  Liebowitz goes on to point out that the congress tries to 

connect expert system theory and practice and promote the sharing of worldwide ideas.  The congress 

usually has three major components: (1) expert system technology, (2) expert system applications, and (3) 

management of expert system programs and projects.  The congress has attracted representatives from 45 

countries and the past three congresses—Orlando, FL, 1991, Lisbon, Portugal, 1994, and Seoul, South 

Korea, 1996—have included close to 800 papers from about 50 countries.  The Fourth World Congress 

on Expert Systems is due to take place in Mexico City in March 1998. 

Medsker and Liebowitz (27) list a number of applications done in Europe, Far East, Mexico, and 

Canada.  European applications include: expert/knowledge-based systems for railway control (in France 

and Austria), a system for treatment of cases concerning the import and export of sugar products 

(Belgium), a system for controlling experimental sites in high-energy physics (Switzerland), and a 

system, called RAP, for naval resource allocation (England).  In Japan, the focus is on manufacturing 

applications however; an expert system for cockpit crew scheduling has been built for Japan Airlines. In 

North America, an expert system (RHUTA) to assign human resources to planned substations and 

transmission lines of a power network was built in Mexico, a system that provides personal information 

on how to reduce a person’s risk of developing cancer was developed in Canada, and an expert system 

(VARMINT) for aiding maintenance and repair of machines on icebreakers was also developed in 

Canada.  These are just a sampling of expert/knowledge-based system applications in use around the 
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world.  In addition to these systems, many applications in the telecommunications industry worldwide are 

highlighted in (60). 

Innovative Applications 

Each year, since 1989, the American Association for Artificial Intelligence (AAAI) has sponsored an 

annual conference that highlights the most innovative applications of AI technology.  The Innovative 

Applications of Artificial Intelligence Conferences was formed “to highlight the successful transition of 

AI technology from theory to practice, recognize AI applications and AI applications developers as 

integral contributions and contributors to the AI field at a national conference, and provide a forum for the 

exchange of experiences and lessons learned in the heartland of the AI community” (61).  An innovative 

application “is one in which AI technology had enabled solutions for problems not previously thought to 

be amenable to computational solutions” (61). 

Over the past nine conferences, including the July 1997 conference in Providence, RI, the most 

significant item is the extreme diversity of application areas? ranging from space and computing to 

business operations and manufacturing.  These application areas mirror the applications areas cited in 

earliest section of this report. 

Some of the most interesting applications presented at recent conferences in the expert/knowledge-

based system area include: a bounced mail expert system (BMES) for the White House to diagnosis 

failures in electronic mail delivery (62) and Fannie Mae’s Automated Mortgage Underwriting Expert 

System (63). 

The Future for Expert/Knowledge-Based Systems 

The future for expert/knowledge-based systems development is bright; however, there remain many 

obstacles that must be overcome in order for expert/knowledge-based systems to truly flourish into a 

common problem solving methodology.  The current generation of expert/knowledge0-based systems is 

plagued by three major limitations: information brittleness, isolation, and static knowledge.  In this 
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section we discuss the on-going efforts to extend the usefulness of expert/knowledge-based systems and 

overcome the limitations.   

In order to overcome the limitations inherent in the technology, methods of learning and the 

integration with other technologies must be incorporated in intelligent systems that solve critical problems 

in changing domains.  In this section, we will discuss the use of expert/knowledge-based systems 

embedded within other technologies, the use of hybrid intelligent systems as problem solvers, and the 

current state-of-the-art in learning mechanisms that can be incorporated in expert/knowledge-based 

systems to overcome these inherent limitations.   

Finally, we will discuss the applications and use of expert/knowledge-based systems in the area of 

knowledge management and business process reengineering and the role of expert/knowledge-based 

systems in distributed artificial intelligence and intelligent agent systems. 

Embedded Systems 

Artificial Intelligence (AI) systems, including expert/knowledge-based systems can be broadly 

categorized into two general classes based on their architecture: stand-alone and embedded.  Typically, an 

expert/knowledge-based system has been developed in a stand-alone architecture and exists either 

independently or as the main component of a system that relies on another system for data collection (64). 

An embedded expert/knowledge-based system would be one that is designed and built to be an 

integral part of some larger system environment.  The overall system environment provides a wide range 

of functions that support the system’s mission ad define its architecture.  The embedded 

ex/pert/knowledge-based system can provide these functions directly, or support them indirectly as 

services.  In either case, the use of an expert/knowledge-based system should be invisible to the 

surrounding system and the user. 

The future of expert/knowledge-based systems will be as part of larger systems in an embedded 

architecture.  Both software systems and consumer products will have expert/knowledge-based systems 

functionality embedded within the product and that functionality will be invisible to the user (consumer).  
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Current uses of expert/knowledge-based system as embedded systems are highlighted in an IEEE Expert 

Special Issue on Embedded AI Technology in June 1994 (64). 

Hybrid Systems 

One of the major reasons for the rise of expert systems has been the failure of other traditional 

techniques to address problems of automating problem solving knowledge.  Approaches from operations 

research have attempted to optimize where in many cases optimization is not possible.  On the other hand, 

recent interest in neural networks has shown where expert systems have failed to address important 

aspects of problem solving knowledge acquired through inductive learning.  

Instead of relying entirely on a single technology, many complex domains require multiple 

technological solutions.  When combined into a single system, these hybrids can sometimes outperform 

the solutions provided by their individual technological components.  For example, neural networks 

exploited small computational building blocks to achieve intelligent behavior.  However, this raw 

computational approach tends to overlook problem specific characteristics that could aid problem solving.  

The addition of rules can sometimes significantly enhance the performance of these systems.  For 

example, rules that order the presentation of training instances in backpropagation neural networks can 

significantly decrease training time.  Also, rules that preserve diversity in genetic algorithms can enhance 

their performance.  Hence, combinations of techniques from neural networks, operations research, 

statistics, and expert systems can provide powerful problem solving methodologies.  A number of 

examples of successful hybrids are described in (65, 66, 67, 68). 

Learning 

Developing machines that learn, in the sense of biological systems, remains one of the fundamental 

challenges in artificial intelligence.  Nonetheless, a great deal has been accomplished over the last several 

decades of research in this area.  Of course, learning represents a broad activity in its own right 

encompassing approaches as varied as direct changes in rules to improve performance and the automatic 

acquisition of knowledge.  The former represents a relatively simple approach to automated learning, 

while the latter is a goal that has yet to be realized.   
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Most learning, automated or not, operates with some form of feedback.  When the feedback comes 

from a supervisor or teacher, we call this supervised learning.  On the other hand, when the feedback 

derives from internally formulated criteria, we call this unsupervised learning.  We begin our discussion 

of learning with the simplest forms of supervised learning and progress through the more difficult (at least 

on machines) and end with a description of unsupervised learning. 

The simplest form of learning is rote learning, where information found as the result of previous work 

is stored for reuse.  This stored information can derive from input by the user or from a procedure 

performed by the machine or both.  Rote learning is useful because it saves time and computations.  Once 

we have reached a specific useful state, we do not want to have to repeat the work done to get there. 

Learning from advice means taking information and converting it into a more useful internal 

representation.  For example, the advice in the card game twenty-one to hold when you have cards with 

value 17 or higher could be translated into the rule: 

IF cards_total_value ?????THEN action = hold. 

Learning from advice systems provides mechanisms for this type of translation.  However, these 

systems must check for the consistency of the rule set. Note that the above would be violated by most 

experienced players who get a pair of aces. 

Parameter adjustment represents another form of learning.  Many expert systems have parameters 

(e.g. certainty factors) that can adjust as information arrives.  The formal adjustment of these parameters 

provides and effective mechanism for performance improvement and has been used in many automatic 

game playing programs (e.g. see (69)). 

Learning by induction is the most widely used approach to formal learning both with and without 

machines.   Induction means generalizing from examples.  This process is basic to much of science and 

human understanding.  Formal induction encompasses the entire field of statistics.  Additionally, many 

approaches to global optimization derive from principles of induction.  From the earliest research into 

machine intelligence using neural networks, most of the fundamental problems of interest were in the area 
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of induction.  Hence, to understand this important area we group the approaches into the categories of 

symbolic learning, statistical methods, optimization, and neural networks.  

While there are many examples of symbolic learning systems, one that embodies the general idea is 

version space approach employed by Mitchell (70).  Version spaces maintain a description of a problem-

solving situation that evolves with examples.  These examples are both positive examples and near 

misses.  For example, to learn the concept of a patient in cardiac distress, the system is presented with 

examples with different blood pressures and shoe sizes.  These examples enable the system to induce that 

blood pressure is part of the concept of cardiac distress, while shoe size is irrelevant.  One algorithm 

employed to accomplish this type of learning is the candidate elimination algorithm.  This algorithm 

generalizes from positive training examples, so that the general rule must cover all of these.  On the other 

hand, the algorithm takes negative examples and makes the rule more specific.  This ensures that these 

examples are not covered by the rule.   

Another symbolic inductive approach is case-based reasoning.  This method stores examples within 

its knowledge base.  As new instances are presented to the system, it conducts a search for closest 

example in storage.  The system then adapts its behavior by working from the most similar instance in 

memory.  The adaptation can use other types of learning, such as parameter adjustment.  Issues in case-

based reasoning include the representation of the cases, the measures of similarity between cases, and 

adaptation mechanisms. 

As noted above, the entire field of statistics concerns itself with induction or developing general 

models from specific data sets.  Obviously, we will not attempt to describe this rich field in this short 

section.  Instead we describe an important approach at the intersection between statistics and artificial 

intelligence: classification trees.   Classification trees formulate rules by looking at a set of examples 

where each example has both a known classification and a fixed number of attributes.  For example, 

suppose we want our system to learn how to classify loan applicants.  For simplicity consider two classes 

for this example: those who pay back their debts and those who do not.  Our example or training set 

would contain instances of both classes and for each instance include attributes that would be available 
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from a loan application.  These might include current income and current debts.  The classification tree 

would partition the training set according to values of these attributes.  The goal is to form this partition in 

such a way that it will correctly classify future instances (i.e. examples not included in the training set).  

Successfully classifying these new cases would indicate proper construction of a classification rule or 

correct induction. 

One of the most successful algorithms for performing this type of induction is the recursive-

partitioning algorithm used in the Classification and Regression Trees (CART) approach (71). The 

recursive-partitioning algorithm operates in a manner similar to the old game of 21 questions.  The 

algorithm considers each attribute and asks whether a partition or division on this attribute would 

successfully group the instances of the training set into their correct classes.  For our loan example, the 

algorithm would look at the current debt attribute and ask if there exists a value such that all members of 

one class are below and all members of the other class are above the chosen value. For most problems a 

value like this does not exist on a single attribute.  Hence, we must find the best partition the training (the 

one with the fewest misclassified instances) and then recursively explore the attributes again for each 

element this partition.   This approach has had numerous successful applications and is now widely 

available in statistical software packages. 

Many researchers have explored optimization methods as the basis for learning by induction.  Perhaps 

the most pervasive and well-known example of this is the use of genetic algorithms.  Genetic algorithms 

(72) model the optimization and learning processes by analogy to evolution.  We describe genetic 

classifiers, which emphasize the learning rather than optimization side of the field.  Suppose we have a 

population of rules.  We also need a fitness function that shows how well each rule performs in the 

domain of our training set.  Our genetic algorithm performs a biased selection of rules from our initial 

population based on their fitness.  The rules are paired and then new rules are formed by randomly 

selecting portions of each parent rule  to go into the offspring rules.  In this way the algorithm generates a 

new population of rules.  The process continues until our performance on the training set reaches an 

acceptable level.  
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Since rules work in conjunction with other rules, we need a method to assign fitness to the rule that 

shows its contribution and not that of other rules in chain.  Many procedures have been examined to 

accomplish this task.  Holland describes this approach as a bucket brigade in which the ultimate 

performance is passed back along the rule chain with each rule getting its fair share of the credit.   

The intuitive appeal of this approach has lead to a large number of experiments and some 

applications.  In most cases, genetic classifiers have run slower than many of the other approaches to 

induction.  

Neural networks represent one of the first approaches to machine intelligence and induction.  While 

genetic algorithms use an analogy with evolution, neural networks use an analogy to the physical 

structure of the brain.  Instead of a single complex processing unit, neural networks attempt to employ 

many simpler processors working together cooperatively in a network.  Many different varieties of neural 

networks exist, but the best known and most widely employed are multi-layer perceptrons, feedforward, 

or backpropagation networks (BPN).  

BPNs organize processors into three or four layers.  The processors in the first or input layer take 

weighted attribute values as inputs. For our loan example these processors would take as input the income 

and debt values for the applicant.  The weights are multipliers on the input values.  The processors in the 

remaining layers take as input the weighted output values from the processors in the preceding layers.  

Again, the weights are multipliers on the input lines.  The final or output layer produces the classification 

or response value for the input instance.  The layers of processors between the input and output are called 

hidden layers.  At most two hidden layers are required to learn an arbitrary function. 

Each processor’s output is the value of a transfer function.  While a variety of transfer functions are 

possible, the one employed in BPNs is a sigmoid or s-shaped function (Figure 7).  This particular function 

guarantees convergence to a local minimum in the error surface that defines the quality of the neural 

network approximation to the true function. 
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Figure 7. Sigmoid Function 

BPNs learn, as their name implies, through a back propagation algorithm (for details see (73)).  This 

algorithm takes an instance with a known classification or response value and puts it through the network.  

The value obtained from the network is then compared to the true value for that class.  This error is then 

propagated back through the network.   The algorithm specifies how the weights on each input line to a 

processor should be adjusted to improve performance and reduce error.  The training process is continued 

until the error is reduced to level and no longer changes significantly between iterations. 

BPNs provide an effective approach to learning under a wide variety of problem types.  However, 

they also have many parameters that affect performance.  These include parameters in the back 

propagation algorithm, as well as the topology (number and composition of the layers) of the network.  

Hence, most development use of BPNs requires considerable experimentation in order to obtain good 

performance. 

The last type of learning is unsupervised learning.  In this case the system develops general rules that 

organize, group, or cluster members of the training set.  For example, we might have a data set provided 

by the census and want to discover patterns or clusters. As with supervised learning the instances in the 

training set have attributes that will serve as the basis for our clustering decisions.    

Since, we have no supervision; the system does not have examples of correct clusters.  Hence, it must 

use an internal evaluation function to judge how well one particular clustering does in comparison to 

another.  This evaluation function takes as input a measure of similarity or distance between instances and 

clusters.  For census data the similarity measure would score the similarities between two individuals 
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based on measured attributes of age, address, type of housing, etc.  With the evaluation function, 

clustering algorithms proceed to group the data in way that puts instances with high similarity together in 

the same cluster.   

Many algorithms exist for performing this function.  Unfortunately, the clustering problem itself is 

among the class of NP-hard problems.  Therefore, except for very small problem instances, we cannot 

obtain a guarantee of optimality for our solutions.  Nonetheless the wide variety of algorithms available, 

can normally provide good solutions for many types of clustering problems encountered in practice. 

Knowledge Management and Business Process Reengineering 

One of the new phrases in the corporate usage today is the term “knowledge management”.  In 1959, 

management guru Peter Drucker coined the term “knowledge worker” to refer to the day when employees 

of corporations will be valued more for their cognitive skills and experiences in solving problems rather 

than their physical (manual labor) skills and experiences (74).  Recently, the Xerox Corporation has 

created a new executive title Chief Knowledge Officer and has given the post to Xerox PARC Director 

Mark Weiser (75).   

Knowledge Management (KM) is a topic of growing interest to large organizations.  It comprises 

activities focused on the organization acquiring knowledge from many sources, including its own 

experience and from that of others, and on the effective application of that knowledge to fulfill the 

mission of the organization. 

As stated in the definition of expert/knowledge-based systems, the primary intent of this technology is 

to realize the integration of human expertise into computer processes.  This integration not only helps to 

preserve the human expertise but also allows humans to be freed from performing the more routine 

activities that might be associated with interactions with a computer-based system.  This makes 

expert/knowledge-based an integral technology to the effective applications of knowledge management in 

many organizations. 

In addition, expert/knowledge-based systems have been identified as a key technology in the field of 

Business Process Reengineering (BPR). (76).  BPR is defined as “the fundamental rethinking and radical 
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redesign of business process to achieve dramatic improvements in critical, contemporary measures of 

performance, such as cost, quality, service, and speed” (76). 

Hammer and Champy cite expert/knowledge-based systems as a “disruptive technology”.  They cite 

that sophisticated organizations have learned that “the real value of expert systems technology lies in its 

allowing relatively unskilled people to operate at nearly the level of highly trained experts”.  All of this, 

while releasing the “experts” from their routine problem solving duties to continue to learn and advance 

in their field and therefore become more valuable to the organization. 

Distributed Artificial Intelligence and Intelligent Agent Technology 

Distributed Artificial Intelligence (DAI) is a rapidly emerging and promising technology. The 

fundamental objective of DAI technology is to develop “a loosely coupled network of problem 

solvers? known as a multi-agent system? that work together to solve problems beyond their individual 

capabilities” (77).  Expert/knowledge-based systems are at the heart of this technology.  

There are many key issues in multi-agent systems (MAS) that have yet to be resolved fully.  For 

further discussion of issues in DAI and MAS see Moulin and Chaib-draa (78).  However, a MAS has 

significant advantages over a single, monolithic, centralized problems solver: faster problem solving by 

exploiting parallelism; decreased communication by transmitting only high-level partial solutions to other 

agents rather than raw data to a central site; more flexibility by having agents with different abilities 

dynamically team up to solve current problems; and increased reliability by allowing agents to take on 

responsibilities of agents that fail (78). 

On-going development of MAS is now progressing and work has been performed to include 

expert/knowledge-based systems into the mix of problem solvers through cooperating expert/knowledge-

based systems (79) and as part of larger control systems (80, 81). 

Summary and Conclusions 

The purpose of this article has been to present an overview of expert/knowledge-based systems 

technology and its use today and in the future.  An attempt has been made to provide the reader with a 
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fundamental understanding of the basic aspects of the technology in terms of its relation to other AI 

technologies, its structure, its development, and its current and future application. 

Expert/knowledge-based systems technology is a mature technology and is an integral part of many 

organizations’ decision-making efforts.  The practical benefits of the technology have been realized by 

many organizations and the future development of these systems will only increase with time due to the 

fact that more complex problems, in critical domains, can now be addressed. 

Future work, however, must still be undertaken in some critical areas, including testing and 

evaluation of systems and overcoming the limitations of being a brittle, isolated, and static technology. 
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